Xanthan lyase of Bacillus sp. strain GL1 liberates pyruvylated mannose from xanthan side chains.

نویسندگان

  • W Hashimoto
  • H Miki
  • N Tsuchiya
  • H Nankai
  • K Murata
چکیده

When the bacterium Bacillus sp. strain GL1 was grown in a medium containing xanthan as the carbon source, the viscosity of the medium decreased in association with growth, showing that the bacterium had xanthan-depolymerizing enzymes. One of the xanthan-depolymerizing enzymes (xanthan lyase) was present in the medium and was found to be induced by xanthan. The xanthan lyase purified from the culture fluid was a monomer with a molecular mass of 75 kDa, and was most active at pH 5.5 and 50 degrees C. The enzyme was highly specific for xanthan and produced pyruvylated mannose. The result indicates that the enzyme cleaved the linkage between the terminal pyruvylated mannosyl and glucuronyl residues in the side chain of xanthan.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1.

An enzymatic route for the depolymerization of a heteropolysaccharide (xanthan) in Bacillus sp. strain GL1, which was closely related to Brevibacillus thermoruber, was determined by analyzing the structures of xanthan depolymerization products. The bacterium produces extracellular xanthan lyase catalyzing the cleavage of the glycosidic bond between pyruvylated mannosyl and glucuronyl residues i...

متن کامل

Polysaccharide lyase: molecular cloning, sequencing, and overexpression of the xanthan lyase gene of Bacillus sp. strain GL1.

When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520-2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open readi...

متن کامل

Molecular identification of family 38 alpha-mannosidase of Bacillus sp. strain GL1, responsible for complete depolymerization of xanthan.

When cells of Bacillus sp. strain GL1 were grown in a medium containing xanthan as a carbon source, alpha-mannosidase exhibiting activity toward p-nitrophenyl-alpha-D-mannopyranoside (pNP-alpha-D-Man) was produced intracellularly. The 350-kDa alpha-mannosidase purified from a cell extract of the bacterium was a trimer comprising three identical subunits, each with a molecular mass of 110 kDa. T...

متن کامل

Purification and characterization of a pyruvated-mannose-specific xanthan lyase from heat-stable, salt-tolerant bacteria.

A xanthanase complex secreted by a consortium of heat-stable, salt-tolerant bacteria includes a lyase that specifically removes terminal pyruvated beta-d-mannose residues from the side chains of xanthan gum. The enzyme was purified to homogeneity from the culture broth following ion-exchange chromatography and gel permeation chromatography. It consists of a single subunit of molecular weight 33...

متن کامل

Production and Purification of a Novel Xanthan Lyase from a Xanthan-Degrading Microbacterium sp. Strain XT11

A xanthan lyase was produced and purified from the culture supernatant of an excellent xanthan-modifying strain Microbacterium sp. XT11. Xanthan lyase was induced by xanthan but was inhibited by its structural monomer glucose. Its production by strain XT11 is much higher than that by all other reported strains. The purified xanthan lyase has a molecular mass of 110 kDa and a specific activity o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 10  شماره 

صفحات  -

تاریخ انتشار 1998